Skip to main content
  • Home
  • Thesis Topics 
  • New Frameworks for Drought Risk Modelling and Drought Assessment Tools for Sustainable Agriculture and Farming Systems Applications

Research Thesis Topic

New Frameworks for Drought Risk Modelling and Drought Assessment Tools for Sustainable Agriculture and Farming Systems Applications


Topic ID
27

Thesis Topic/Title
New Frameworks for Drought Risk Modelling and Drought Assessment Tools for Sustainable Agriculture and Farming Systems Applications

Description

Agricultural commodity, ecosystems, health and well-being are impacted by drought. Improving confidence in spatial modelling is necessary. Local drought information using regional climate prediction is difficult to achieve due to coarse resolution of models, unique geographical location and lack of real-time observations over large regions. Local-scale predictive models using machine learning (computational programs) can achieve accurate outcomes. Efficient tools for local assessment as alert or predictive systems are needed to operate locally using point-based input data and modelling that can be used by farmers and local government to be forewarned of drought in their localised regions.

To address deficits in methods, students will forecast Rainfall-Decile Drought Index and Standardized Precipitation and Evapotranspiration Index. This information acts as crucial knowledge for farmers and Government Ministries. The project develops hybrid models using meteorological data, sea surface temperature and climate indices with spatial mapping of accuracy, limitations and model performances.

Objectives are: (1) To test a series of models including Artificial Neutral Network, Support Vector Regression and Extreme Learning Machine, (2) Address issues related to ‘‘noise’’, non-stationary or contaminated inputs that deteriorate model performance by novel wavelet technique for “cleaning” the input variables, (3) Validate input/output data and model uncertainties arise from quality and representativeness of data, model structure (ability of model to describe the input variable’s response) (4) Combine several models into a hybrid framework that presents the best prediction of climate-risk.

The use of hybrid models new addition to drought modelling for climate-risk management.


Principal Supervisor

Associate Supervisors

Research Affiliations
  • Institute for Agriculture and the Environment
  • International Centre for Applied Climate Sciences
  • School of Agricultural, Computational and Environmental Sciences

Field of Research
  • Atmospheric Sciences
  • Civil Engineering
  • Physical Geography and Environmental Geoscience


Application Open Date
29/02/2016

Application Close Date
31/12/2019

USQ Scholarship Applications

Other Scholarship Funding Details
Australia Awards (Country-Specific Closing Dates), and Australian Endeavor Scholarships (Close June 2018)

Pre-approved for Ethics
Not Applicable

Admission Requirements

Please review the admission requirements for the academic program associated with this Thesis Topic

Suits students interested with background in physics, atmospheric science, environmental physics, climate science, computing and agriculture.




Back to List